COMPUTABLY COMPACT METRIC SPACES
نویسندگان
چکیده
Abstract We give a systematic technical exposition of the foundations theory computably compact metric spaces. discover several new characterizations computable compactness and apply these to prove results in analysis effective topology. also technique less combinatorially involved proofs known from literature. Some do not have or spaces their statements, thus applications are necessarily direct expected.
منابع مشابه
Computably Based Locally Compact Spaces
ASD (Abstract Stone Duality) is a re-axiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambda-calculus. In this paper, this is shown to be equivalent to a notion of computable basis for locally compact sober spaces or locales, involving a family...
متن کاملCompact Quantum Metric Spaces
We give a brief survey of many of the high-lights of our present understanding of the young subject of quantum metric spaces, and of quantum Gromov-Hausdorff distance between them. We include examples. My interest in developing the theory of compact quantum metric spaces was stimulated by certain statements in the high-energy physics and string-theory literature, concerning non-commutative spac...
متن کاملCovering compact metric spaces greedily
Abstract. A general greedy approach to construct coverings of compact metric spaces by metric balls is given and analyzed. The analysis is a continuous version of Chvátal’s analysis of the greedy algorithm for the weighted set cover problem. The approach is demonstrated in an exemplary manner to construct efficient coverings of the n-dimensional sphere and n-dimensional Euclidean space to give ...
متن کاملLearning Over Compact Metric Spaces
We consider the problem of learning on a compact metric space X in a functional analytic framework. For a dense subalgebra of Lip(X), the space of all Lipschitz functions on X, the Representer Theorem is derived. We obtain exact solutions in the case of least square minimization and regularization and suggest an approximate solution for the Lipschitz classifier.
متن کاملLocal Isometries of Compact Metric Spaces
By local isometries we mean mappings which locally preserve distances. A few of the main results are: 1. For each local isometry / of a compact metric space (M,p) into itself there exists a unique decomposition of M into disjoint open sets, M = Ai g U • • • U Ai>, (0 < n < oo) such that (i) f(M}0) = M!Q, and (ii) f(M{) C M{_x and M< ^ 0 for each i, 1 < i < n. 2. Each local isometry of a metric ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Bulletin of Symbolic Logic
سال: 2023
ISSN: ['1943-5894', '1079-8986']
DOI: https://doi.org/10.1017/bsl.2023.16